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Abstract. We consider a thought experiment, in which a neutrino is produced by an electron on a nucleus in
a crystal. The wave function of the oscillating neutrino is calculated assuming that the electron is described
by a wave packet. If the electron is relativistic and the spatial size of its wave packet is much larger than
the size of the crystal cell, then the wave packet of the produced neutrino has essentially the same size as
the wave packet of the electron. We investigate the suppression of neutrino oscillations at large distances
caused by two mechanisms: (1) spatial separation of wave packets corresponding to different neutrino
masses; (2) neutrino energy dispersion for given neutrino mass eigenstates. We resolve the contributions
of these two mechanisms.

1 Introduction

There are two different approaches to neutrino oscillations
in the literature: one of them deals with the wave function of
free neutrinos, while the other considers the propagator of
virtual neutrinos. The latter approach was analyzed in [1,2]
for a thought experiment, where a neutrino was considered
to be produced by an electron on the target nucleus A, and
captured by the nucleus B in the detector. The process
was described as a two-stage Feynman amplitude, e+A →
C + ν, ν + B → D + l with a virtual neutrino, its Green
function connecting the production and detection points:
xA = (tA,xA) and xB = (tB ,xB). As it is well known, at a
large distance rAB = |xB −xA| from the production point,
virtual particles become effectively real and one may speak
of their wave function, in particular, of the neutrino wave
function, ψν(x). Though this statement is well known and
practically evident, an explicit expression for ψν can be
instructive for the description of the effect of oscillation
suppression in a thought experiment.

There are two mechanisms of erasing oscillations. The
first one is spatial separation of neutrino wave packets of
different mass eigenstates [3–6]. The second mechanism is
caused by neutrino energy dispersion (see e.g. [7]). The
amplitude of the two-stage process e + A → C + νi and
νi + B → D + l with a virtual neutrino of given mass mi

is determined by the standard rules of quantum field the-
ory [1]:
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Ai =
∫

d4x1d4x2ψ
∗
l (x2)ψ∗

D(x2)ψB(x2)

×Gi(x2 − x1)ψ∗
C(x1)ψe(x1)ψA(x1), (1)

where x1,2 are 4-dimensional coordinates, xk = (tk,xk),
Gi(x2 −x1) is the Green function of the ith neutrino mass
eigenstate, and non-essential spin factors are neglected.
The term Pij = Ai A

∗
j in the probability was integrated

over the phase space of the final particles in [1]. After
integration the interference term with i �= j vanishes at a
large spatial separation |xA − xB |.

In this approach, however, we were unable to resolve
the contributions of the two mechanisms. In this note we
try to separate the “Siamese twins”. For this purpose we
consider only the first stage of the process, e+A → C+ν,
with a free neutrino. We consider the case when the spatial
size of the electron wave packet is much larger than the
size of the crystal cell, which determines the localization of
the nucleus. The opposite case will be described elsewhere.

2 Wave function versus amplitude

The non-normalized wave function of a neutrino produced
in the reaction e+A → C + ν is

ψν =
∑

i

Ueiψi|νi〉, (2)

ψi(t,x) =
∫

d4x1Gi(x− x1)ψ∗
C(x1)ψe(x1)ψA(x1),

where x ≡ (t,x) is the space-time coordinate and |νi〉 is
the ith neutrino mass eigenstate.
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In this equation the product ψ∗
C(x1)ψe(x1)ψA(x1)

serves as a local source of neutrinos. To calculate the ampli-
tude of neutrino interaction with the nucleus B one would
evidently substitute this expression for ψi into the integral
over x with the wave functions of other particles partic-
ipating in the reaction, according to (1). This naturally
agrees with the general prescription.

Like in our recent paper [1] we consider the initial nu-
cleus bound in a crystal and describe it by a stationary
wave function localized near the point x = 0:

ΨA(x) = FA(x) e−itEA , (3)

where EA is the energy of the nucleus. The Fourier trans-
form of FA(x), which is required in what follows, is

KA(qA) =
∫

dxFA(x)e−iqAx . (4)

By assumption, the nucleus A is at rest and, thus,
KA(qA) is centered at qA = 0 with the uncertainty σA ∼
a−1.

The wave function of the incident electron is considered
to be a wave packet:

Ψe(x) =
∫

dqeKe(qe − pe)eiqe(x−xe)−iEe(qe)t

= eipe(x−xe)−iEe(pe)t Fe (x − evet ) . (5)

Here e ≡ pe/pe, pe ≡ |pe|, Ee(qe) ≡ √
q2

e +m2
e, the

Fourier amplitude Ke(qe − pe) is centered near qe = pe

with the uncertainty σe, the center of the packet envelope
Fe (x − evet) is at the point xe at the moment t = 0, and
the electron group velocity ve is defined as

ve ≡ ∂Ee(qe)
∂qe

∣∣∣∣
qe=pe

=
pe√

p2
e +m2

e

� 1 − m2
e

2p2
e

. (6)

In what follows we assume the electron to hit the nucleus
A at t = 0 and the collision to be central, i.e. xe = 0.

The recoil nucleus C is described by the plane wave

Ψ∗
C(x) = eitEC−ipCx, (7)

unless its momentum is comparable with σA, which is an
extremely rare case.

For the Green function the following expression can
be derived:

Gi(t,x) = − 1
4π|x|

∫ ∞

−∞
dωe−iωt+i

√
ω2−m2

i |x|. (8)

Let us now substitute expressions (3), (5), (7) and (8)
into (2) and perform the trivial integration over x1:

ψi(t,x) =
1
r

∫
dωdqeKe (qe − pe) dqAKA (qA)

×δ(Ee(qe) + EA − EC − ω)δ(qe + qA − pC − ki)

× exp(ikir − iωt) . (9)

Here r ≡ |x|, ki ≡ nki, n ≡ x/r, ki ≡ √
ω2 −m2

i and
the expansion

|x − x1| ≈ r − nx1, (10)

is performed assuming r to be much larger than the in-
teraction region. In (9) and in what follows we omit some
non-essential numerical factors. We integrate (9) over qA

and ω and obtain

ψi(x) =
1
r

∫
dqeKe (qe − pe)KA (−qe + pC + ki)

× exp [ikir − iωt] , (11)

where now ω(qe) ≡ Ee(qe) + EA − EC .
While proceeding with the calculations we bear in mind

the range and hierarchy of the quantities involved:

mi 	 σe 	 σA 	 me 	 pe 	 MA,MC . (12)

In particular, we consider the case when KA(qA) is wide
in comparison with Ke(qe):

σe 	 σA. (13)

This allows one to set

KA (−qe + pC + ki) = KA

(−pe + pC + k0
i

)
,

k0
i ≡ ki |qe=pe , throughout the essential range of integra-

tion over qe. Assuming that the momentum distribution of
the electron is sufficiently narrow we may expand the inte-
grand in terms of qe near the central electron momentum
pe:

ω(qe) = ω0 + vee(qe − pe),

ki(qe) = k0
i +

ve

vi
e(qe − pe), (14)

where we introduce the neutrino group velocities analo-
gously to the electron one:

vi ≡
(
∂ω

∂ki

)0

=

√
(ω0)2 −m2

i

ω0 � 1 − m2
i

2(ω0)2
; (15)

the upper index “0” means that the corresponding quan-
tities are calculated at qe = pe.

Taking into account (5), (11) and (14) we obtain the
following simple expression for the wave packet of the pro-
duced neutrino through the envelope of the wave packet
of the incoming electron in coordinate space, Fe:

ψi(t, r,n) (16)

=
eik0

i r−iω0t

r
KA(−pe + pC + k0

i n)Fe

(
ve

vi
(r − vit)e

)
.

The factor ve/vi � 1 makes the neutrino wave packet
a little bit wider than the electron one. It is not essential
for our purposes and will be omitted in what follows.

Equation (16), which is one of the main results of this
paper, is quite natural. If there were a long wave packet of
the incoming electron, it would create a packet of neutrinos
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with a similar length. A good analogy is the scattering of a
sound wave on a target which creates another sound wave.
The duration and, correspondingly, the spatial length of
the produced wave packet should be equal to the duration
and size of the original one.

Strictly speaking, one has to calculate the amplitude (1)
to determine the probability of the oscillating behavior of
neutrinos. However, one may rely on a simplified approach
based on the interpretation of the absolute value squared
of the neutrino wave function as the probability density for
the particle to be found at a spatial point x at a given time
t. Such an approach is valid, if we deal with wave packets,
the longitudinal size of which is much larger than their
wave length, and their transversal size is much larger than
their Compton wave length (see, e.g., [8,9]). If we neither
register the nucleus C nor measure the time of the neutrino
detection, we are interested in the detection probability of
the neutrino νl at point x:

Pνe→νl
(x) =

∫
dpCdt

∣∣∣∣∣
∑

i

U∗
liUeiψi(t,x)

∣∣∣∣∣
2

. (17)

For simplicity, in what follows we assume i = 1, 2,
l = e, µ, Ue1 = cos θ, Ue2 = sin θ. For the νµ production
probability we obtain

Pνe→νµ
(x)

=
f

2r2
(sin 2θ)2

∫
dpCK

2
A(−pe + pC + k0

i n)

×
[
1 − 1

f
cos

(
rδm2

2ω0

)
(18)

×
∫

dtFe ((r − v1t)e)Fe ((r − v2t)e)
]
,

where f ≡ ∫
dtF 2

e ((r − t)e), δm2 ≡ m2
2 −m2

1.
The term proportional to cos(rδm2/2ω0) in (18) de-

scribes oscillations. It vanishes at large distances for two
different reasons.
(1) Packet separation. When (v2 − v1)r > 1/σe, that is

r > Losc
pe

σe
, Losc ≡ 2pe

δm2 , (19)

the product Fe(r− v1t)Fe(r− v2t) is nearly zero for every
t, and the oscillating term vanishes even before integration
over pC .
(2) Neutrino energy dispersion. Note that ω0 depends on
pC :

ω0 � Ee(pe) + EA −MC − p2
C

2MC
, (20)

whereMC denotes theC nucleus mass. Owing to the factor
K2

A(−pe +pC +k0
i n) in (18), the effective size of the region

of integration over pC is of the order of σA. Thus ω0 varies
near its central value (which is roughly equal to pe), and
the variation equals p0

CσA/MC . Here, the central value p0
C

is determined by the equation

p0
C = pe −

(
pe +

m2
e

2pe
+ EA −MC − (p0

C)2

2MC

)
n. (21)

If the angle between vectors e and n is sufficiently large
(|e − n|pe 
 MC − EA, p

2
e/2MC), then

p0
C � pe|e − n|. (22)

This is the case considered below. The variation ofω0 equals
pe|e − n|σA/MC . Thus integration of cos

(
rδm2/2ω0

)
over

pC in (18) leads to a vanishing result if

r > Losc
MC

|e − n|σA
. (23)

We see that there are two competitive mechanisms for
suppression of neutrino oscillations. If

σe < σA
pe|e − n|
MC

, (24)

then the energy dispersion mechanism dominates, and

Lsup = Losc
MC

|e − n|σA
. (25)

If

σA
pe|e − n|
MC

< σe 	 σA, (26)

then the packet separation works, and

Lsup = Losc
pe

σe
. (27)

These results coincide with those obtained in [1].
One more comment is worth making at this stage. As we

said above, the interference disappears when two neutrino
wave packets ψi and ψj , (16), cease to overlap. At first
sight this statement is at odds with the expression for
the production amplitude (1) of lepton l on the nucleus B.
Indeed, the product of amplitudes Ai and A∗

j , which enters
the probability of the process (see (27)–(29) of [1]), does not
vanish even when the productψi(x)ψ∗

j (x) vanishes, because
the amplitude contains an integral overx and the product of
integrals never vanishes. However, one can check that after
integration over the phase space of the final particles the
product of the integrals vanishes exactly when the neutrino
wave packets no longer overlap. Such integration over the
phase space makes the result effectively local.

This conclusion is intuitively clear for the following
reasons. The product of the amplitudes prior to integration
over the phase space describes the production probability
of a plane wave final state, because the final states are
taken as momentum eigenfunctions. It is evident that such
a probability never vanishes even in the case of infinite
separation of neutrino wave packets. It is essentially the
same as the excitation of a resonator by two wave packets. A
resonator with a very largeQ-factor would stop to oscillate
only after a very long time. So, if such a resonator is hit by
one wave packet and after a while by another delayed wave
packet, the interference between the packets would still be
observed by such a resonator because it keeps oscillating
long after the first packet has gone while the second has
just arrived.
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3 Conclusions

In this note we have considered neutrinos produced in the
reaction e + A → C + ν. For the case of a large size of
the electron wave packet (σe 	 σA) we have calculated
the neutrino wave packet (see (16)). Its size coincides with
that of the incident electron wave packet.

We have demonstrated that in the case of σe < pe|e −
n|σA/MC the suppression of neutrino oscillations at large
distances is due to the neutrino energy dispersion, while in
the case of pe|e − n|σA/MC < σe 	 σA it occurs because
of the neutrino packet separation. The corresponding sup-
pression lengths are given by (25) and (27). It is evident
that for terrestrial conditions such lengths are unrealistic.
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